

Shivang Chopra – Delhi Technological University Ramit Sawhney – Netaji Subhas Institute of Technology Puneet Mathur – University of Maryland, College Park Rajiv Ratn Shah – MIDAS, IIIT-Delhi

Context & Objective

Model & Analyze the linguistic aspects of low-resource code-switched;
 Hindi-English offensive social media text.

• Empirically validate the effectiveness of exploiting linguistic homophily (connected people speak similarly).

• Discover and normalize bias across race, religion & gender in Hinglish.

Challenges

- Loose syntactic and semantic structure
- Diverse categories of variable biases

Community based author profiling

Contributions

- Hindi-English Code-Switched --- Modeling & Processing
- Author profiling --- Graph Embeddings
- Bias --- Identification & Elimination

Ethical Considerations and Limitations

- **Privacy**: Informed Consent, no intervention.
- Interpretation: Interpretation of offensive behaviour might be highly subjective.
- **Demographics:** Impairs generalizability --- narrow tightly coupled communities.
- Medium-Specificity: Limited to Twitter, but generalizable across social media.
- Assessment Granularity: Non-binary, simplification but scalable.

Code Switching: Hinglish & Challenges

• To validate the proposed hypothesis, we use two datasets, HS (Bohra et al. 2018) and HEOT (Mathur et al. 2018b).

Mere musalmaani bhaiyo ko id mubarak. (Id mubarak to my Muslim brothers)	Non-offensive
Vo to congress ka kutta ban chuka hai saala. (He has become a dog for the congress party.)	Offensive
He is a Muslim aadmi. (He is a Muslim man.)	Non-Offensive

Table 1: Some examples from the dataset

Architecture

Linguistic Homophily and Graph-based Author Profiling

- Tightly coupled communities have high influence on offensive behaviour.
- Incorporating this homophily using Node2Vec.
- Significant performance enhancement observed.

Modelling the Social Graph

G _{Mentions}	A mentioned B in a tweet
G _{Quotes}	A quotes B's tweet
G _{repliedTo}	A replied to B's tweet

Gathered from the tweets from the dataset and the historical tweets of users

Statistic	Value	
Number of nodes	3005	
Number of edges	4448	
Average degree	2.9604	
Maximum path length	11	
Largest Connected component	1481	

Table 2: Graph statistics for HS dataset

Pair Generation

- Clustering Words
- Making pairs
- Expert segregation

Hindu	Muslim
India	Pakistan
Bhai (Brother)	Behen (Sister)
Mom	Dad
Kutta (Dog)	Kutiya (Bitch)
Chacha (Uncle)	Chachi (Aunt)

Bias Correction

Analysing Debiased Word Embeddings

(a) Pre-Debiasing

Results

	Madal	HS		HEOT	
	Model		Acc	F1	Acc
Text Comparison	CNN	0.49	0.51	0.70	0.76
	CNN + LSTM	0.60	0.60	0.69	0.70
	CNN + BiLSTM	0.54	0.56	0.72	0.76
	BiLSTM	0.58	0.59	0.61	0.63
	BiLSTM + Attn	0.62	0.62	0.71	0.77
	CNN + BiLSTM + Attn	0.62	0.62	0.72	0.76
Graph + Text Ablation	CNN + node2vec	0.50	0.52	NA	NA
	CNN + LSTM + n2v	0.61	0.61	NA	NA
	CNN + BiLSTM + node2vec	0.57	0.57	NA	NA
	BiLSTM + n2v	0.59	0.59	NA	NA
	BiLSTM + Attn + node2vec	0.62	0.63	NA	NA
	CNN + BiLSTM + Attn + node2vec	0.63	0.64	NA	NA
	CNN + BiLSTM + Attn + DeepWalk (DW)	0.67	0.71	NA	NA
	PV + node2vec	0.52	0.63	NA	NA
PV Incorporation	CNN + BiLSTM + Attn + PV	0.64	0.71	0.77	0.85
	CNN + BiLSTM + Attn + PV + DW	0.73	0.78	NA	NA
Debiasing Ablation	CNN + BiLSTM + Attn + PV + POSDeb	0.64	0.70	0.70	0.73
	CNN + BiLSTM + Attn + PV + MBE	0.68	0.72	0.86 ⁺	0.8 7 ⁺
	CNN + BiLSTM + Attn + PV + DW + MBE	0.76 ⁺	0.78+	NA	NA
Comparative	LSTM + Transfer Learning [Kapoor et al. 2018]	0.71*	0.74*	0.79*	0.87
	CNN + Transfer Learning [Mathur et al. 2018b]	0.69*	0.72	0.71*	0.83*
	Statistical ML [Bohra et al. 2018]	0.62*	0.71	0.70*	0.76*
	Hierarchical LSTM [Santosh and Aravind 2019]	0.48	0.71	0.52*	0.63*
	Ours	0.76	0.78	0.86	0.87

 Table 3: Ablation and comparative results in terms of Accuracy and F1 score. NA : No results due to unavailability of data *

 : Replication of baselines

 + : Statistically significant results

Conclusion

Developed a robust classifier for Hindi-English hate speech detection (Incorporated bias elimination to improve robustness and ensure fairness

Extensive Qualitative and Quantitative Analysis performed.

(Ц)

Utilized social network graphs for author profiling to enrich the classification model

Thank You

Linguistic Backbone and Profanity Vector Augmentation

- BiLSTM-based architecture used as the backbone network.
- Profanity Vector incorporated along with the tweet latent vector.

$$\mathbf{PV}^{(j)} = \begin{cases} 0 & \text{if } p_j \in t_i \\ 1 & \text{if } p_j \notin t_i \end{cases}$$

Qualitative Analysis

Ground Truth

Delhi sarkar is baar accha kaam kar rahi hai. (Delhi government is doing great work this time.) Vo saala bada harami aadmi hai. (He is a big bastard.) Mere musalmaani bhaiyo ko id mubarak. (Id Mubarak to my Muslim brothers.) Tum hindu h*ide ho. (You are a hindu transgender) Tum muslmaani h*jde ho. (You are a muslim transgender) Tu muslmaan ch**iye h*jde hai. (You are a p*ssy muslim transgender) Kashmir me teen aatankvadi mar gaye. (These terrorists died in Kashmir.) Vo to Congress ka kutta ban chuka hai saala. (He has become a dog for the Congress Party.)

Pre Debiasing Post Debiasing