

Open Domain Suggestion Mining using Fine-Grain Analysis

Shreya Singal: Delhi Technological University Tanishq Goel: Delhi Technological University Shivang Chopra: Delhi Technological University Ms. Sonika Dahiya: Delhi Technological University

Objectives

- The primary objective of the work is Suggestion Mining. Suggestion Mining can be defined as the classification of reviews as Suggestion or Non-Suggestion which helps firms enhance their services according to the customers' needs.
- This objective is further decomposed into a multi-task problem which classifies the domain of the reviews classified as suggestions. This is also known as Open-Domain Suggestion Mining.

Dataset

The **ODSM** Dataset by Negi et al. has been used, which has reviews across the following domains:

- Hotel
- Electronics
- Travel
- Software

Fig. 1: Manually provided multi-domain reviews on Yelp.

Related Work

Related work across the following three domains have been investigated:

- Suggestion Mining
- Open-Domain Suggestion Mining
- Imbalanced Classification

Baseline	ID	OD	DB	AM
Ramanand et al. [3]	\checkmark	X	X	×
Brun et al. [4]	\checkmark	X	X	×
Wicaksono et al. [5]	\checkmark	X	X	×
Negi et al. (a) [6]	\checkmark	X	X	×
Negi et al. (b) [2]	\checkmark	\checkmark	X	X
Negi et al. (c) [7]	\checkmark	\checkmark	X	X
Jain et al. [8]	\checkmark	\checkmark	\checkmark	×
Ours	\checkmark	\checkmark	\checkmark	\checkmark

Table 1: Relative comparison of various baselines.ID: In-Domain Suggestion Mining OD:Open-Domain Suggestion Mining DB: DataBalancing AM: Attention Modelling

Challenges

- Highly imbalanced data: The suggestion:non-suggestion distribution is very low leading to biased results.
- Very long reviews: In most of the cases, the length of a review is very big as compared to the actual suggestion presented in the review.

Dataset Identifier	Suggestion : Non-Suggestion
Travel Train	1314/3869 (0.34)
	229/8/1 (0.20)
Hotel Train	448/7086 (0.06)
	404/3000 (0.13)
Electronics Train	324/3458 (0.09)
	101/1090 (0.09)
Software Train	1428/4296 (0.33)
Software Test	296/742 (0.39)

Table 2: Details of the Open Domain SuggestionMining (ODSM) dataset.

Oversampling Algorithm

The Discourse-Marker based oversampling algorithm involves the following 3 steps:

- Training baseline classifier
- Discourse marker enhancement
- Inference based pruning

1 Input: Reviews (R) 2 Pretrain a baseline suggestion classifier C 3 Let M be the set of traditional Discourse Markers 4 for d in \mathcal{D} do for r_i in \mathcal{R} do 5 for *m* in *M* do 6 if $C(r_i) = 1 \land d \in r_i$ then 7 $\mathbf{r}_{i} = \{s_{h_{i}}, m, s_{t_{i}}\}$ 8 // SWAP Operation Add { s_{t_i}, d, s_{h_i} } to the dataset. 9 if $\mathcal{C}(s_{h_i}) = 1$ then 10 // CROP Operation Add s_{h_i} to the dataset. 11 if $\mathcal{C}(s_{t_i}) = 1$ then 12 // CROP Operation Add s_{t_i} to the dataset. 13 end 14 15 end 16 end

Algorithm 1: Discourse Marker based Over-Sampling

Preliminaries

Fig. 2: Internal structure of the Multi-Headed Self-Attention Mechanism in a Transformer block explaining the various operations involved in obtaining the multi-head attention heat-maps .

Fig. 3: Internal structure of the Adapter layer used for Transfer Learning.

Proposed Architecture

Fig. 4: Overall architecture demonstrating the various phases of the proposed pipeline.

Results

Method	Hotel	Electronics	Travel	Software	Pooled (Fine-Grain)
Baseline (SVM) [6]	0.79	0.78	0.66	0.72	0.33
Baseline (LSTM) [2]	0.79	0.77	0.64	0.75	0.68
FastText	0.85	0.85	0.57	0.78	0.81
FLAIR	0.86	0.86	0.68	0.82	0.82
Casual Transformer	0.88	0.86	0.80	0.91	0.84
SMOTE + FastText	0.85	0.83	0.73	0.87	0.85
Jain et al. [8]	0.86	0.83	0.71	0.88	0.85
SMOTE + FLAIR	0.87	0.84	0.76	0.89	0.87
SMOTE + Casual Transformer	0.89	0.88	0.78	0.88	0.90
Discourse Marker + FastText	0.89	0.87	0.78	0.89	0.87
Discourse Marker + FLAIR	0.91	0.87	0.77	0.91	0.89
Discourse Marker + Casual Transformer	0.91	0.88	0.80	0.90	0.91

Table 3: Performance evaluation using F1 score. In all the cases, the discourse marker-based oversampling leads to a significant improvement over the baseline classifiers. Furthermore, qualitative analysis reveals the confusing nature of the reviews of Travel domain as the reason for the unusually low F1 values.

Qualitative Analysis

Fig. 5: Qualitative Analysis of the word-wise heatmaps representing the relative attention scores for the suggestions in various domains under study.

Limitations

🗙 🗙 🗙 😭 📩 7/11/2019

The hotel room I was in was nicely renovated however there was no bathtub just a standing shower. I had to unplug the mini fridge with how noisy it was, and the complimentary breakfast was just wheat toast, apples and oranges.

Fig. 5: Review demonstrating the limitation of our approach in capturing suggestions modelled as assertions.