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Attention-Net: An Ensemble Sketch Recognition Approach using
Vector Images

Gaurav Jain*, Shivang Chopra*, Suransh Chopra*, and Anil Singh Parihar*

Abstract– For the past few decades, machines have replaced
humans in several disciplines. However, machine cognition still
lags behind the human capabilities. We address the machines’
ability to recognize human drawn sketches in this work. Visual
representations such as sketches have long been a medium of
communication for humans. For artificially intelligent systems
to effectively immerse in interactive environments, it is required
that machines understand such notations. The abstract nature
and varied artistic styling of these sketches make automatic
recognition of drawings more challenging than other areas of
image classification. In this paper, we use sketches represented as
a sequence of strokes, i.e., as vector images, to effectively capture
the long-term temporal dependencies in hand-drawn sketches.
The proposed approach combines the self-attention capabilities
of Transformers while effectively utilizing the long-term temporal
dependencies through Temporal Convolution Networks (TCN)
for sketch recognition. The confidence scores obtained from the
two techniques are combined using triangular-norm (T-norm).
Attention heat-maps are plotted to isolate the discriminating
parts of a sketch that contribute to sketch classification. The
extensive quantitative and qualitative evaluation confirms that
the proposed network performs favorably against state-of-the-
art techniques.

Index Terms—Sketch recognition, Transformers, Attention-
mechanism and Development, Temporal convolution network,
Visual Cognition

I. INTRODUCTION

Human beings demonstrate an inherent intellectual capa-
bility to draw and apprehend wide-ranging ideas through
sketches. The utility of sketches has merely evolved over
time, from sculptures and carvings in ancient times to design
blueprints in the modern era. Hence, to build artificially
intelligent systems that are all-pervasive and create an im-
mersive experience for humans, it is required that abstract
concepts such as sketches must be understood. Sketch analysis
has gained importance in recent years, with implications
in understanding academic setups such as mathematics [1],
chemistry [2]–[4], and electronics [5]. This has paved the
way for further development in the field with applications
like sketch segmentation [6]–[9], image retrieval [10]–[12],
and sketch recognition [13]–[15]. Succeeding in these tasks
would further extend the capabilities of machines to reach
human perception capabilities, such as understanding human
behaviour and actions [16].

In this work, we focus on sketch recognition, which aims
to identify human drawings and classify them into their
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respective categories. Although existing methods provide sat-
isfactory accuracy performance for image recognition [17],
only a few approaches have addressed the issue of identifying
human drawn illustrations [18]–[20]. Sketch recognition was
first introduced by Sutherland et al. [21]. Since then, several
approaches have been introduced for better sketch comprehen-
sion in this active area of research. Conventional studies [18],
[19] consider sketches as nothing but images, converting them
to binary representations and extracting features for training
classifiers like Support Vector Machines (SVM). With the
success of deep learning-based approaches in recent years for
image classification tasks [17], these techniques have gained
importance in sketch analysis as well. In particular, convolu-
tional neural network-based approaches [14], [22] have outper-
formed the conventional techniques in sketch recognition with
significantly dominant accuracy performances. However, most
of the techniques often overlook the characteristic properties
of sketches, and hence leave room for improvement.

Achieving artificial visual perception of sketches is partic-
ularly challenging due to (1) heterogeneous representations,
and (2) level of abstraction. Representation of an object is
contingent upon an individual’s own interpretation of that
object. This leads to a high intra-class and inter-class variation.
Unlike images, sketches cross the boundary of what the object
actually is, to what the object may be interpreted by a human.
Hence, learning such uncertain, yet acceptable, depiction of
an object proves to be a non-trivial task. Representation of
sketches as images is inconsistent with the way sketches
are drawn by humans. Hence, a more credible depiction of
sketches is using the vector image format. At this abstract
level, sketches constitute a sequence of short pen strokes that
render a drawing over time. This representation proved to be
an apt choice for sketch generation [23].

In order to address the aforementioned issues, an ensemble
approach is proposed for sketch recognition in this work. The
major contributions of the proposed approach are as follows:

• Attention-based classification of sketches: This is the
first approach to the best of our knowledge that employs
Transformers for sketch recognition. We leverage the
attention mechanism of Transformers to identify objects.
For this, sketches are interpreted as sequence of strokes.
We isolate parts of sketches that contribute towards
classification of an object.

• Long-term temporal dependencies modeling of
strokes: Recurrent networks fail to process long-term
correlations. Hence, we incorporate TCN in our network
to trace long-term dependencies through dilated convolu-
tions for vector images.

• Ensemble learning: Amalgamation of self-attention
mechanism using Transformers and modeling of long-
term sequential information using TCN is achieved using
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T-norms. The score-level fusion ensures the two tech-
niques to learn independent features, while combining
scores to make a collective decision.

• Parallel Architecture: The proposed architecture inde-
pendently trains the two modules. Despite having lots
of trainable parameters, the individual components of
our architecture are able to leverage parallel processing
to enable simultaneous training thereby leading to a
reduction in training complexity.

The rest of the paper is organized as follows: In Section II,
related approaches are discussed. Section III presents the
problem formulation and the mathematical notations used
throughout the paper. In Section IV, the proposed approach is
presented. Section V evaluates the proposed approach through
a qualitative and quantitative analysis. Section VI discusses the
ablation studies of the proposed approach, which is followed
by concluding remarks in Section VII.

II. RELATED WORK

Extensive research has been directed towards image recog-
nition tasks [17], however, limited work has been done in
the field of sketch recognition. The very first work in sketch
recognition was proposed by [21]. Following which, several
approaches have been proposed. These can be loosely classi-
fied into the following categories:

A. Traditional Classifiers

These methods process pixel-level images, or raster images,
to extract local features that are used to train classifiers or
guide learning strategies. For example, [13] extracted bag-of-
features from sketches, which trains a Support Vector Machine
(SVM) classifier. [18] represented sketches as Fisher Vectors.
A Gaussian Mixture Model (GMM) was used to encode raster
images of sketches. The deviation from the GMM, in terms
of Fisher Vectors, was used to finally train an SVM classifier.
Due to the absence of visual cues in sketches, simple classifiers
fail to achieve reasonable recognition rates. To address this,
[24] employed a star graph representation. In this, varying
set of features were extracted and fused using a multi-kernel
framework.

Conventional approaches have proved to be nothing more
than a first step in the field of sketch recognition when
compared with human recognition rates. These methods fail to
model the casually drawn sketches that exhibit a wide-ranging
diversity in styles and presentations. The complexity involved
in sketch recognition is beyond the scope of simple classifiers,
and thus researchers resort to deep learning based approaches.

B. Convolutional Neural Networks (CNN)

Similar to the conventional approaches, these methods
process raster images for recognition. [25] employed a
residual network for freehand sketch recognition. The authors
conducted experiments with varying depth of networks and
validated that deeper networks perform significantly better for
sketch classification. In another work, [26] proposed DeepS-
ketch 3, which employs CNN for partial sketch recognition,

and sketch retrieval using query-by-example. Efforts to exploit
the power of well-established CNN architectures, such as
Alexnet [17] and Google net [27], have resulted in outperform-
ing the classical methods. The very first approach to surpass
human recognition accuracy was a CNN-based method [14].
However, the raster image representation required for these
approaches fail to characterize these sketches at the right
level of abstraction. Recently, [28] explored transfer learning
approach for sketch classification. While [29] proposed to use
both shape and appearance of sketches. For this, a hybrid-CNN
was proposed to extract two sets of deep features for shape
and appearance respectively. An SVM was trained using these
sets of features to classify sketches.

Although CNN-based approaches have comfortably out-
performed existing classifiers, there is scope for lots of
improvement. There have been concentrated efforts towards
extrapolating the power of existing deep learning models for
new domains [30]. However, the thin stroke and absence of
color channels leaves very little information for a CNN to
process. Furthermore, while people can agree on what an
object looks like, how they ultimately render the object can
vary significantly, thereby leading to lots of artistic variation.
This calls for an approach that can extract more than just the
spatial information available in a raster image. To mitigate this,
sequential information in sketches is exploited, which cannot
be used for a photograph.

C. Recurrent Neural Networks (RNN)

Sequential information that sketches constitute is what
makes their handling different from images. To exploit
this piece of information, recurrent neural network offer a
favourable solution for sequence modeling. Sketch-RNN [23]
is the very first approach to corroborate the effectiveness of
vector images for sketch generation. In this, an RNN-based
encoder-decoder architecture models the temporal correlation
between the previous pen strokes to generate the next pen
stroke. These vector representations overcome the barrier of
representation but display a considerable drop in performance
when the number of object categories increase. Most RNN-
based approaches constitute the Long Short Term Memory
(LSTM) units. While LSTMs have been employed exhaus-
tively for language modeling tasks, they fail to model the
underlying distribution for sketches. This is mainly attributed
to the inability of these units to model complex and large
sequences of data. To this end, attention mechanism is used
in tandem with LSTMs [31] and convolutional neural networks
as well [32]. This ensures that the model focuses on certain
parts of the input that form the most distinguishing features
of an object class. However, LSTMs still fail to encode long
term dependencies and adapt to variable-length inputs.

In sum, a vector image based sketch recognition approach
is required, which can model long term dependencies along
with both the temporal information effectively. To address this
research gap, an ensemble approach for sketch recognition is
proposed in this work. The details of which are described in
the following section.
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Fig. 1. Internal structure of the Multi-Headed Self-Attention Mechanism in
a Transformer block explaining the various operations involved in obtaining
the multi-head attention heat-maps .

III. PROBLEM FORMULATION AND NOTATIONS

The Quick, Draw! [23] dataset contains drawings in times-
tamped vector format. The main goal of our experiments is
to leverage the temporal information in the timestamped data
in order to classify sketches without rasterizing them into the
corresponding image data.

Each sketch, S, is represented as sequence of strokes si i.e.
S = {s1, s2, ..., sn} where n denotes length of sequence. Each
stroke si is transformed to a 3-point format given by:

si = {∆xi,∆yi, pi}, ∀i ∈ {1, 2, ..., n} (1)

Where ( ∆xi, ∆yi ) is the change in the x and y co-ordinates
from the (i − 1)th to the ith timestamp, and pi is a binary
variable which denotes PenState.

pi =

{
0, if pen is lifted and moving to the next point
1, if pen is in contact with surface

(2)

IV. PROPOSED METHODOLOGY

A. Preliminaries

1) Transformer
Previously, LSTMs were the only way to effectively capture

the temporal nature of data. However, [33] proposed a novel ar-
chitecture Transformer, which replaced the complex recurrent
computations with attention mechanism. Transformers play a
pivotal role in our architecture and have the added advantage
of concurrent computations over LSTMs. Fig. 1 shows de-
tailed view of self attention mechanism in a transformer. The
attention function is a mapping from the d-dimensional input
Values, V , onto the output A, which is parameterised by a set
of Key - Value (K, V ) pairs. The Attention can essentially be
defined as a weighted sum of Values V = {vi|i ∈ {1, 2, ..., d}}
such that,

Attention(K,Q, V ) = SOFTMAX
(
QKT

√
d

)
V (3)

where K,Q, V ∈ IRd. Furthermore, in order to capture mul-
tiple perspectives, instead of averaging the attention scores, we

Fig. 2. Residual connections and dilated convolutions in TCN

use multi-head self-attention mechanism. Linear projections of
Queries, Keys and Values are taken in order to incorporate the
different perspectives of the m attention heads which are then
concatenated to form the final output.

MultiHead(Q,K, V ) = Concat(head1, head2, ..., headm)WO

(4)
where headl = A(QWQ

l ,KWK
l , VWV

l ), such that the
project matrices WQ

l , WK
l , WV

l ∈ IR
d
m×d, ∀l ∈

{1, 2, ...,m}, and WO ∈ IRd×d. The proposed network uses
multi-head self-attention with m = 8 attention heads, along
with d = 128. The parallel computation of these heads is
analogous to performing a single attention. Hence, allowing
the model to capture positional and temporal information
without increasing time complexity.

2) Temporal Convolution Networks (TCN)
Convolution-based architectures have been shown to outper-

form recurrent neural networks in various sequence modelling
tasks [34]. In their discussions, [34] propose a novel Tempo-
ral Convolution Network (TCN) which comprises of a 1-D
fully convolutional network used in conjugation with casual
convolutions in order to capture long term dependencies in
the temporal data. Here, we attempt to describe the basics
of TCN thereby giving the intuition behind choosing such an
architecture for our experiments.

The receptive field of simple casual convolution is linearly
dependent on the depth of the network. Dilated convolutions
however allow an exponentially large receptive fields. For-
mally, for the sequence of strokes S = {s1, s2, ..., sn}, and a
filter f : {0, ..., k−1} → IR, the dilated convolution operation
F on the ith element si of the sequence is defined as:

F(si) = (S ∗d f)(si) =

k−1∑
j=0

f(j) · si−d·j (5)

where d is the dilation factor, k is the filter size and s−d ·j
accounts for the direction of the past. Furthermore, the large
depths of TCNs induce instability in the architecture which is
effectively tackled by addition of residual connection in the
architecture as shown in Fig. 2.



4

3) Triangular Norm (T-norm)
Another central aspect of our research revolved around the

conjunction of scores obtained through the Transformer and
TCN based architectures. As demonstrated in the ablation
study in Section V, end-to-end training of these architec-
tures simultaneously affects the performance of the individual
components. Hence, each of these components was trained
individually on the data and the scores from these layers were
finally combined using score fusion techniques. Here, we give
a basic introduction of the various score fusion techniques used
in our experiments.

As discussed in [37], T-norms are functions that map the
unit squares onto the unit intervals i.e. T (A,B) : [0, 1] ×
[0, 1] → [0, 1]. The T-norms provide infimum of the scores
obtained from the various models, thereby leading to an
improvement in the overall performance of our proposed
architecture. The T-norms used as a part of our experiments
are as follows:

• Einstein Product: T (A,B) = AB
(2−A+B−AB)

• Hamacher: T (A,B) = AB
(A+B−AB)

• Yager (r > 0):
T (A,B) = max(1− ((1−A)r + (1−B)r)

1
r , 0)

• Frank (r > 0): T (A,B) = logr(1 + (rA−1)(rB−1)
r−1 )

These methods prove fruitful in finding the interrelations
between the scores obtained from the different models, all the
while preserving the individual traits captured by these models.

B. Attention-Net: Overall Pipeline

Fig. 3 illustrates the proposed framework which constitutes
multiple modules, (1) Feature Augmenter, (2) Transformer
blocks, (3) Temporal convolution network module, and (4)
Score fusion. Details of each module are as follows:
Feature Augmenter: The low feature dimensionality of the
input data posed a significant problem while experimenting
with the Transformer-based architectures. An important condi-
tion that needs to be satisfied while working with Transformers
is that the number of input features d should be divisible by
the number of heads in the multi-head attention module of
the Transformer. The initial attempts at using Fully connected
and Convolutional layers to increase the input dimensionality
was met with limited success. Therefore, a convolution-based
Augmenter was used in order to effectively capture the input
representation and render a better-performing pipeline. The
Augmenter module has two-fold functionality, (1) Extracting
a latent vector representation Z ∈ IR128×n of our input data,
and (2) Reshape the input to feed a larger context vector to
the Transformer. Finally, the latent representation of the given
input (Z) is derived from the middle layer (Bottleneck) of
the Augmenter. This augmenter is trained independently on
the input data and then the frozen weights of the encoder are
used in our overall pipeline.
Transformer: Traditionally, Transformers [33] have been ex-
tensively used in language modeling tasks. We propose to
leverage the proven ability of Transformers to capture long-
term dependencies for our task of sketch recognition. First,
the embedding layer is removed since semantic information is
not required to be preserved by our model as opposed to the

domain of Natural Language Processing. As proposed in the
official implementation, we induce positional characteristics of
our data into our model by using coordinate embedding [38].
In this embedding, a tuple with (position, time) is computed,
instead of calculating just the position. Pt ∈ IRx×d is obtained
by generating a sinusoidal position embedding with 1 ≤ i ≤ h
positions, and 1 ≤ t ≤ n time steps for each vector-dimension
1 ≤ j ≤ d:

Pt
i,2j = sin

(
i

100002j/d

)
+ sin

(
t

100002j/d

)
(6)

Pt
i,2j+1 = cos

(
i

100002j/d

)
+ cos

(
t

100002j/d

)
(7)

Our overall pipeline consists of 10 blocks of Transformers with
8 attention heads each connected via Residual Connections
as shown in Fig. 3. After passing the input through the
coordinate embedding, the encoded input P is passed through
the Transformer to obtain the point-wise attention heat-maps
Ak,∀k ∈ {1, 2, ...,m}. Finally, to perform a classification
task, we added a fully-connected layer on top of the final
Transformer Block’s output for the Start Token (s0). The
function of the Extract layer is to fetch features from the
output corresponding to this Start token. In other words, if
the output of the transformer block is of the dimensions
n×d, then the Extract layer’s output is a vector of dimension
d. This output is then passed through a fully connected
layer with Softmax activation to obtain class probabilities
ΨA = {ψA1

, ψA2
, ..., ψAc

}, where c represents the number
of classes.
Temporal Convolution Network: In many of the temporal
modelling tasks, Convolution Layers tend to outperform the
conventional Recurrent-based architectures, including LSTMs
and GRUs, due to their excellent ability to capture short
as well as long-term dependencies in terms of n-grams. As
described in [34], we propose to use a Temporal Convolution
Network (TCN) alongside our Transformer-based architec-
ture to enhance the performance of our overall pipeline. As
shown in Fig. 3, the input S is passed through 3 layers
of TCN. These layers are internally comprised of 4 Dilated
Convolution layers connected via residual connections. The
4 Dilated Convolutional sub-layers have receptive fields of
size d = [1, 2, 4, 8, 16] respectively, thereby capturing temporal
dependencies of upto 216 timesteps. For each timestep i and
layer j, the output of the individual residual blocks is as
follows:

Sji = ReLU(Sj−1
i + F(Sj−1

i )) (8)

For each layer j, we use a filters of size k = 5 and
128 kernels each. Finally, the output of the last cell of the
final convolution layer S3n is picked and passed through a
fully connected layer with Softmax activation to obtain class
probabilities ΨB = {ψB1

, ψB2
, ..., ψBc

}, where c represents
the number of classes.
Score Fusion: In the last phase of our pipeline, the class-
wise probability distributions ΨA and ΨB obtained from the
Transformer and TCN architectures are combined using vari-
ous score fusion techniques. The two modules were initially
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Fig. 3. Attention-Net: proposed architecture for ensemble sketch recognition using transformers and temporal convolution network.

trained from end-to-end. However, this led to a degradation
in the performance of the overall pipeline. The proposed
architecture therefore trains the individual modules indepen-
dently and then combines the scores using various score fusion
techniques. This led to the assignment of respective weights
to the scores of individual modules and thereby leading to a
far superior algorithm as compared to the individual modules.
The final prediction probabilities were obtained as follows:

y = T (ΨA,ΨB) (9)

C. Implementation Details

The three component of our pipeline were trained separately
and finally the trained models were combined together using
various score fusion techniques. All modules shared the same
training configuration. Early stopping on validation loss con-
figured with δe = 0.00001 and patience= 10 is used. Learning

Rate Scheduler was used for dynamic training which defines
the learning rate (lri) for ith epoch as:

lri = ((lrbeg − lrmin) ∗ δilr) + lrmin (10)

where δlr = 0.9 is the decay rate, lrbeg = 0.0001 represents
the initial learning rate, and lrmin = 0.00001 is the minimum
learning rate. The hyper-parameters used in the network are
fine-tuned for optimal performance using grid search.

V. EXPERIMENTS

A. Dataset and Evaluation Metrics.

The Quick, Draw! dataset [23] is used to evaluate the
recognition performance of the proposed approach. The dataset
constitutes over 50 Million sketches spread around 345 object
categories. Recognition accuracy is reported to validate the
performance of the proposed method. A random train-test split
of 80-20% is done, with 50,000 samples per class during

1Official TensorFlow implementation of RNN for Quick, Draw!

https://github.com/tensorflow/docs/blob/master/site/en/r1/tutorials/sequences/recurrent_quickdraw.md
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Method Top-1 Top-5 Top-10
Traditional
Classifiers

HOG-SVM [13] 50.25 ± 2.05% 62.51 ± 0.64% 64.22 ± 1.64%
Fisher-Vectors [18] 56.11 ± 1.34% 74.28 ± 1.00% 79.19 ± 0.33%

CNN-based
Classifiers

AlexNet [17] 63.25 ± 0.95% 80.83 ± 2.07% 85.02 ± 1.36%
ResNet50-CNN [35] 78.86 ± 2.18% 91.10 ± 0.86% 94.14 ± 0.97%
Sketch-a-Net v2 [14] 74.84 ± 1.01% 87.19 ± 1.13% 91.25 ± 2.00%
Graph Neural Networks [36] 73.20 ± 0.77% 85.35 ± 1.22% 89.05 ± 0.63%

RNN-based
Classifiers

RNN-Tensorflow 1 75.59 ± 2.04% 90.14 ± 1.27% 94.13 ± 2.08%
Transformer 76.35 ± 0.96% 89.02 ± 0.84% 93.95 ± 1.38%
Temporal Convolution Network 75.17 ± 2.22% 87.99 ± 1.20% 91.70 ± 1.54%
Concatenate ( TCN, Transformer ) 73.21 ± 1.67% 88.02 ± 1.00% 90.41 ± 2.70%

Ensemble
(Transformer +
TCN)

Ensemble (Max) 77.98 ± 2.34% 88.12 ± 1.66% 94.21 ± 1.76%
Ensemble (Min) 76.32 ± 1.90% 86.04 ± 1.22% 93.67 ± 1.67%
Ensemble (Average) 78.14 ± 2.05% 88.44 ± 0.70% 94.17 ± 1.09%
Proposed Ensemble (Hamacher) 78.24 ± 1.22% 88.93 ± 1.96% 94.44 ± 1.27%
Proposed Ensemble (Einstien) 78.54 ± 2.02% 89.01 ± 2.65% 94.57 ± 1.30%
Proposed Ensemble (Yager) r=1.6 78.88 ± 2.10% 90.33 ± 1.42% 95.52 ± 1.57%
Proposed Ensemble (Frank) r=1.4 79.33 ± 1.56% 90.46 ± 0.90% 95.27 ± 1.71%

TABLE I
COMPARATIVE EVALUATION OF RECOGNITION ACCURACY ON THE Quick, Draw! DATASET, WITH (A) TOP-1, (B) TOP-5, (C) TOP-10 ACCURACY.

Method 5 20 50
Traditional
Classifiers

HOG-SVM [13] 75.21 ± 1.74% 66.79 ± 2.10% 63.22 ± 0.95%
Fisher-Vectors [18] 79.53 ± 1.31% 75.80 ± 1.72% 72.90± 0.89%

CNN-based
Classifiers

AlexNet [17] 77.18 ± 1.55% 75.22 ± 1.05% 73.06 ± 2.30%
ResNet50-CNN [35] 96.47 ± 1.66% 90.06 ± 2.22% 86.20 ± 1.82%
Sketch-a-Net v2 [14] 94.78 ± 1.25% 88.64 ± 1.63% 85.19 ± 0.78%
Graph Neural Networks [36] 94.71 ± 1.00% 89.13 ± 1.34% 82.50 ± 1.25%

RNN-based
Classifiers

RNN-Tensorflow 1 95.58 ± 2.15% 87.33 ± 1.52% 83.98 ± 2.00%
Transformer 96.21 ± 1.37% 90.31 ± 1.82% 88.72 ± 2.09%
Temporal Convolution Network 95.98 ± 1.22% 90.21 ± 1.77% 86.54 ± 1.32%
Concatenate ( TCN, Transformer ) 94.81 ± 1.67% 89.79 ± 1.27% 84.41 ± 1.93%

Ensemble
(Transformer +
TCN)

Ensemble (Max) 95.11 ± 2.22% 90.77 ± 2.36% 88.16 ± 1.16%
Ensemble (Min) 94.71 ± 2.63% 87.21 ± 2.77% 85.77 ± 2.33%
Ensemble (Average) 95.89 ± 2.01% 90.55 ± 1.52% 89.48 ± 2.16%
Proposed Ensemble (Hamacher) 96.57 ± 1.11% 91.34 ± 1.33% 90.48 ± 1.45%
Proposed Ensemble (Einstien) 96.66 ± 1.69% 90.73 ± 1.21% 89.13 ± 1.41%
Proposed Ensemble (Yager) r=1.6 97.15 ± 2.13% 92.32 ± 1.63% 90.22 ± 1.33%
Proposed Ensemble (Frank) r=1.4 97.33 ± 1.65% 91.24 ± 1.67% 90.77 ± 1.01%

TABLE II
COMPARATIVE EVALUATION OF RECOGNITION ACCURACY ON SUBSETS OF Quick, Draw! DATASET, WITH (A) 5 CLASSES, (B) 20 CLASSES, (C) 50

CLASSES.

training and 10,000 samples per class for testing. Average
recognition accuracy is reported using a 5-fold cross-validation
approach.

B. Comparative Evaluation.

An exhaustive quantitative comparison is performed to
validate the performance of the proposed approach against
(1) Conventional classifiers, (2) CNN-based, and (3) RNN-
based techniques. Further, baseline score fusion techniques
such as Max, Min, and Average are compared as well. The
compared approaches are trained using the same dataset for
fair evaluation. Table I reports the recognition accuracy of the
proposed approach in comparison with the performance of the
state of the art methods. We evaluate top-1, top-5, and top-10
recognition rates.

The traditional classifiers fail to model the complex and
diverse features present in the information-deficient sketches.
This exhibits a clear parallel with the poor performance of
these conventional approaches. On the other hand, CNN-
based approaches perform considerably better due to the large
amount of trainable parameters that suffice to model the

diversity in features and classes present in the challenging
Quick, Draw! dataset. However, CNN-based approaches tend
to fall short of the performance of RNN-based approach. This
is because of the ability of RNN-based approaches to model
the ‘way’ a sketch is rendered, i.e., the sequential information.
The proposed approach, on the contrary, outperforms all the
proposed classes of approaches due to the ability of extracting
both temporal and spatial information.

The ensemble approach achieves higher accuracy than its
individual counterparts as well, i.e., the Transformer and the
TCN only networks. This validates our hypothesis as the
efficacy of combining the attention mechanism and long-term
temporal dependencies clearly translates into higher recogni-
tion rates.

To further evaluate the performance, three subsets of the
Quick, Draw! dataset are formed containing 5, 20, and 50
classes respectively. For each subset, classes are selected
randomly and average recognition accuracy for a 5-fold cross
validation are reported. Table II reports the comparison results.
As the number of classes increase, Attention-Net consistently
outperforms the baseline approaches. Quantitative evaluation
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Model Configurations Recognition Accuracy

No. of Blocks Skip-connections Feature-Augmenter 5 20 50

5 7 7 93.66 ± 1.34% 84.44 ± 2.04% 78.90 ± 1.06%
5 3 7 94.56 ± 2.11% 86.38 ± 1.00% 81.60 ± 1.54%

10 7 7 92.91 ± 2.15% 85.32 ± 1.88% 75.03 ± 1.72%
10 3 7 94.60 ± 1.45% 86.55 ± 0.96% 77.44 ± 1.29%
5 7 3 93.76 ± 2.10% 87.11 ± 1.56% 82.87 ± 2.24%
5 3 3 92.73 ± 1.11% 83.14 ± 1.98% 79.55 ± 1.62%
10 7 3 95.71 ± 1.41% 89.13 ± 1.79% 87.21 ± 2.11%
10 3 3 96.21 ± 1.37% 90.31 ± 1.82% 88.72 ± 2.09%

TABLE III
ABLATION ANALYSIS AND COMPARATIVE RESULTS FOR DIFFERENT MODELS ON THE Quick, Draw! [23] DATASET IN TERMS OF ACCURACY REPORTED

ON THREE SUBSETS WITH 5, 20 AND 50 CLASSES RESPECTIVELY. VALUES IN BOLD DEPICT THE HIGHEST ACCURACY ACHIEVED IN EACH SUBSET.

Fig. 4. Visualization of the attention heat-maps of a few classes in the Quick, Draw! dataset depicting the relative importance of the parts of sketch during
inference.

confirms the effectiveness of representing sketches as vector
images.

VI. DISCUSSIONS

A. Ablation Analysis

The proposed Transformer-module majorly constitutes two
modules, the feature-augmenter, and the transformer blocks.
In this section, we evaluate the effectiveness of these propo-
sitions. For this, we compare the recognition accuracy of
different models by tweaking three model configurations.
First, we vary the number of transformer blocks. Second,
we add skip-connections between each transformer block to
exploit the power of residual learning. Finally, experiments
that corroborate the effectiveness of the proposed auto-encoder
is performed. Table III reports the observed performance.

Varying the number of transformer blocks alters the number
of parameters. The proposed network with 10 blocks performs

significantly better than the 5-block variant. This enables the
model to address the complexity of sketch recognition. In-
creasing the number of blocks further provided an insignificant
increase in accuracy with a relatively large training overhead,
such as time and space complexity.

Further, inclusion of residual learning observes improve-
ment in model performances for CNNs [35]. In our network,
we add skip-connections between the transformer blocks.
This is because gradients often get lost when passed through
multiple layers. In order to address this issue, skip-connections
ensure that lower layers receive information, even if the
network gets deeper.

The proposed architecture with feature-augmenter displays
significantly superior recognition accuracy, as compared to
other ablations. This is due to the fact that the offsets
(∆xi,∆yi), contain fairly low amount of information for com-
putationally intensive architectures like transformers. Hence,
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Fig. 5. Comparison of attention heat-maps obtained after (1) using score fusion, (2) concatenating the outputs of the Transformer and TCN modules.

mapping the offsets to a larger latent vector enables the
transformer to tweak the attention heads with a lot more
available input data.

B. Attention Visualization

Fig. 4 plots the attention heat-maps for all the 8 heads from
the final block of the Transformer. Different heads focus on
varying set of features in each sketch. For instance, in the
class fan, most of the heads pay attention on the circular
rim of a fan while the others focus on the spokes. For the
bat class, most of the structures contain the same amount of
attention weights like the central body, wings and face. Similar
observations can be made for the other classes.

C. Order of Strokes

The usage of vector image raises another important question
about the importance of order of strokes, which was previously
immaterial in the case of raster images. Since the input is a
real-time set of strokes, unlike images that are fed into the
network after completion, it is important to assess the effect of
the same for classification results. Fig. 6 displays two different

ways to render the sketch of a ant. From the attention heat-
map, it can be inferred that there is no effect of sequence of
strokes for the final classification or attention. This is attributed
to the fact that the Quick, Draw! dataset is acquired from a
large number of people, maintaining the randomness in the
order of strokes used to draw a sketch. This bias is completely
removed from the training dataset itself.

Fig. 6. Experiments to evaluate the effect of order of strokes on attention
heat-maps and classification (drawn through a User Interface in real-time).
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D. Score Fusion v/s Concatenation

For combining the outputs of the Transformer network and
the TCN, an obvious candidate appears to be the concatenation
of the two outputs. In this case, an end-to-end network is
trained. The attention heat-maps in the two cases are plotted
in Fig. 5. The attention heat-maps in the case of concatenation
reveals a fairly inconsistent view of attention across different
heads and classes, when compared with the score fusion case.
This behaviour is mainly attributed to the fact that when both
the networks are trained in an end-to-end fashion, the two tend
to learn dissimilar feature sets. Hence, an effective way of
combining the two approaches is to train them independently
and fuse them at score level, rather than feature level. This is
further corroborated with the recognition accuracy reported in
Table II for the two cases.

E. Computational Complexity Analysis

In this subsection, we discuss the computational cost of
the proposed approach in comparison to existing techniques.
Traditional and CNN-based approaches can classify the sketch
only once the complete sketch has been rendered. On the
contrary, sequence-based models possess the ability to clas-
sify partial sketches, which facilitates real-time inference.
Therefore, the use of sequence-based sketch classifiers over
the traditional and CNN based classifiers yields a significant
improvement in terms of the inference times. This extended
functionality of sequence-based classifiers establishes domi-
nance over these traditional and CNN-based approaches in
terms of computational efficiency.

Amongst the sequence-based classifiers, the Transformer-
based architectures significantly outperform the RNN-based
classifiers in terms of computational complexity. This is pri-
marily due to capability of Transformers to utilize parallel
processing. In order to process an input with n time-steps,
the Transformers and TCN both require O(1) sequential
operations, while RNN-based architectures require a much
greater O(n) sequential operations [33]. Further, we compare
the average inference times per sample averaged across 10, 000
samples for the various architectures, reported in Table IV.
A significant improvement in inference times can clearly be
observed for the proposed Transformer-based architecture as
compared to existing RNN-based implementations, such as
RNN-Tensorflow1.

Model Inference Time
RNN-Tensorflow1 112.29 ± 10 ms

Transformer 80.38 ± 6 ms
Temporal Convolution Network 93.71 ± 3 ms
Ensemble (TCN + Transformer) 95.22 ± 7 ms

TABLE IV
AVERAGE PER-SAMPLE INFERENCE TIMES FOR THE VARIOUS

ARCHITECTURES FOR THE SEQUENCE-BASED MODELS.

VII. CONCLUSION

The proposed approach provides an ensemble approach for
combining the attention mechanism in Transformers, and the
ability of TCN to extract long-term temporal dependencies

information from the vector images for recognizing human
drawn sketches. An extensive quantitative and qualitative
comparison of the same supports the validity of the proposed
method. Further, ablation analysis, along with attention maps
reveal that the proposed approach makes prediction based on
certain parts of sketches, that are intuitive in nature.

In the future, transformer-based networks can be adapted
to solve challenging problems in the domain of computer
vision. Potential applications include tasks such as sketch
retrieval or sketch synthesis, which require descriptive line-
drawing features, could be interesting to explore. The proposed
approach opens avenues to enhance the cognition capabilities
of machines to process sequential visual information. Alternate
domains of computer vision that employ such sequential
data include human action recognition for complex motion
sequences like, dance, martial arts etc.
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