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Abstract
Sketches have been employed since the ancient era of cave paintings for simple illustrations
to represent real-world entities and communication. The abstract nature and varied artistic
styling make automatic recognition of these drawings more challenging than other areas
of image classification. Moreover, the representation of sketches as a sequence of strokes
instead of raster images introduces them at the correct abstract level. However, dealing
with images as a sequence of small information makes it challenging. In this paper, we
propose a Transformer-based network, dubbed as AttentiveNet, for sketch recognition. This
architecture incorporates ordinal information to perform the classification task in real-time
through vector images. We employ the proposed model to isolate the discriminating strokes
of each doodle using the attention mechanism of Transformers and perform an in-depth
qualitative analysis of the isolated strokes for classification of the sketch. Experimental
evaluation validates that the proposed network performs favorably against state-of-the-art
techniques.

Keywords Sketch recognition · Transformers · Vector images · Deep learning

1 Introduction

The ability to draw and comprehend eclectic notions through sketches reflects the intel-
lectual capabilities of human beings. Drawing has long been a part of human behavior,
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mutating its utility from rock carvings in the ancient era, to blueprints of drafts in the
modern age. Additionally, these sketch drawings assist humans in communication and cre-
ative design, such as art. Hence, intelligent machines must efficiently fathom the rapid
proliferation of interaction with these human activities to be pervasive in all environments.
Sketch analysis has been efficiently utilised in diverse domains like mathematics [18],
chemistry [24], and electronics [23]. Further, sketch analysis spans a wide spectrum of
applications, such as sketch segmentation [16, 19, 20, 35], image retrieval [12, 41, 43], and
sketch recognition [11, 46, 48].

In this work, we focus on sketch recognition, which aims to identify human drawings
and classify them into their respective categories. Although existing methods provide sat-
isfactory accuracy performance for image recognition [17], only a few approaches have
addressed the issue of identifying human drawn illustrations [27, 28, 45]. Sketch recog-
nition was first introduced by Sutherland et al. [36]. Since then, several approaches have
been introduced for better sketch comprehension in this active area of research. Conven-
tional studies [28, 45] consider sketches as nothing but images, converting them to binary
representations and extracting features for training classifiers like Support Vector Machines
(SVM). With the success of deep learning-based approaches in recent years for image classi-
fication tasks [17], these techniques have gained importance in sketch analysis. In particular,
convolutional neural network-based approaches [25, 46] have outperformed the conven-
tional techniques in sketch recognition with significantly dominant accuracy performances.
However, most of the techniques often overlook the characteristic properties of sketches,
and hence leave room for improvement.

Perceiving sketch is a challenging task due to two main reasons, (1) heterogeneous
representations and (2) level of abstraction. Representation of the same object is depen-
dent upon the interpretation of that object, which consequently leads to high intraclass
variation between samples of the same class. Figure 1 illustrates this diversity among dif-
ferent samples of the same class. For example, distinct views of a cat in Fig. 1b include
different representations which render the task of finding patterns relatively difficult for the

Fig. 1 Visualization of few classes in the QuickDraw [14] dataset, a Dog, b Cat, c Ice-cream, d Eiffel Tower
showing the inter-class and intra-class homophilic behaviour and the highly abstract nature of sketches which
poses significant challenges to the models
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models. Alternatively, sketches of one class could be interpreted as belonging to another
class. For instance, the second sketch of the dog class in Fig. 1a resembles a cat shown
in Fig. 1b. Hence, learning such overlapping representations which may exhibit a signifi-
cantly anomalous, yet acceptable, view proves to be an arduous task. Further, pixel-level
images of sketches misinterpret how humans actually comprehend these drawings on an
abstract level. Sketches are rendered as a series of strokes that build up the desired illus-
tration over time. Hence, a more plausible expression of these sketches is the vector image
format, which represents sketch drawings as a sequence of pen strokes. Besides, sketches
generated using these vector image formats in Sketch-RNN [14] have corroborated their apt-
ness for sketches. Therefore, an approach that deals with these complex correlations among
sketches, interpreting sketches as a sequential abstraction is required. Moreover, appli-
cations like Handwriting Recognition, Optical Character Recognition (OCR) can hugely
benefit from the advent of a robust classifier that can handle data with such huge variations.

In order to address the aforementioned issues, a transformer-based approach is proposed
for attentive sketch recognition. The main contributions of the proposed approach are as
follows:

– Sketch Recognition using Transformers: This is the first approach to the best of our
knowledge that employs transformers for sketch recognition. We leverage the attention
mechanism of Transformers to identify objects. For this, sketches are interpreted as a
sequence of strokes, like humans actually comprehend drawings in real-time.

– Attention-based analysis of sketches: Through extensive qualitative analysis of the
sketches using the attention mechanism, we isolate parts of the sketches necessary for
object classification.

The rest of the paper is organized as follows: In Section 2, a literature review has been
conducted to discuss related approaches. Section 3 discusses the preliminary concepts used
in the proposed architecture. The proposed approach is presented in Section 4, which is fol-
lowed by an exhaustive qualitative and quantitative experimental evaluation of the proposed
technique is in Sections 5 and 6. Finally, Section 7 concludes the paper along with future
directions.

2 Related work

In this section, existing frameworks for sketch classification have been discussed in depth.
These approaches can be broadly classified as, (1) Conventional Classifiers, (2) Convolu-
tional Neural Network (CNN) based approaches, and (3) Recurrent Neural Network (RNN)
based approaches.

2.1 Conventional classifiers

Most of the traditional methods employ raster images as input. These pre-processed pixel-
level images are used to extract local features from these sketches. These features are then
utilized to classify sketches, using either classifier or guiding different learning strategies.
For instance, Eitz et al. [11] proposed to represent sketches as bag-of-features, which trains a
multi-class Support Vector Machine (SVM) to classify sketches. On the other hand, Schnei-
der et al. [28] chose a Fisher Vector representation of raster images. In this, a Gaussian
Mixture Model (GMM) was first generated and then used to encode the image using its
deviation from the GMM, in terms of the Fisher Vector representation. Finally, an SVM
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is trained to classify images. In order to overcome the high structural complexity and
absence of visual cues, Li et al. [21] proposed a star graph representation and employed a
multi-kernel framework that fuses features extracted using different approaches.

Further, Yanki et al. [45] focused on reducing the amount of annotated data required,
while maintaining recognition accuracy. For this, active learning was introduced, which
measures the informativeness of unlabeled samples and selects batches of informative sam-
ples. Alternative approaches have been introduced by exploiting domain-specific knowledge
[5, 7, 8, 32, 48, 51]. Although these approaches made progress in sketch recognition, most
of these methods failed to address the complex and subtle style variations. Additionally,
freehand sketches are casually drawn and hence pose the issue of inaccurate inputs, which
further aggravates the complexity involved in sketch recognition.

2.2 Convolutional neural network-based

Recently, deep learning-based models have been found to perform favorably against tradi-
tional methods for classification and detection in diverse fields [22, 34, 38, 39] and even
for sketch recognition [25, 42, 47, 50]. Several approaches on optimization algorithms have
also been proposed [1–4, 6]. Among these, CNN based methods that use the same raster
images as input have considerably improved recognition accuracy. In [26], authors propose a
residual network (ResNet) based CNN architecture for freehand sketch recognition, validat-
ing that deeper networks perform favorably in comparison to shallow networks. Although
the performance of different architectures were compared, this work lacks an exhaustive
hyper-parameter tuning and discusses networks only as deep as 25 layers. Similarly, Yang
et al. [44] proposed a deep CNN model, in order to overcome the need for feature engineer-
ing, usually required in traditional approaches. The authors further extended recognition
capabilities to design an image retrieval method.

In [29], the authors proposed to extract features using deep CNN, and employed K-
nearest neighbors for similarity search, in order to retrieve images. Additionally, the authors
proposed to extract medium and high-level features that are extracted from deeper and shal-
low layers of the network, respectively. Seddati et al. [30] proposed DeepSketch 3, which
utilizes the capabilities of deep convolutional neural networks for diverse applications like,
partial sketch recognition, and sketch retrieval using query-by-example. In [31], authors
propose to explore transfer learning for sketch recognition. Recently, Zhang et al. [49] pro-
posed to exploit both the appearance and shape representations in a sketch. For this, a hybrid
CNN was introduced, which extracted features using two different CNNs, one for shape,
and the other for appearance. These features were then used to train an SVM and classify
sketches. Several efforts have been focused on exploiting the powerful CNN architectures
like Alexnet [17], and Google net [37].

Although a CNN-based approach [46] was the first to surpass human performance on the
TU-Berlin dataset [11], these approaches employ a flawed representation, which proves to
be the bottleneck in achieving even superior accuracy. Using current state-of-the-art deep
CNN -based recognition models for this task proves unavailing due to the fact that the
sketches are far less visually complex than photographs. The absence of color channels and
the highly abstract nature of the sketches can be observed in Fig. 1d, where it is very hard for
most of the sketches to qualify as the respective class. Furthermore, while people can agree
on what an object looks like, how they ultimately render the object can vary significantly,
thereby leading to lots of artistic variation. This lack of homophily in the sketches and their
abstract nature renders most of the existing works done for sketch recognition at a serious
disadvantage.
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2.3 Recurrent neural network-based

In order to address the issue of faulty representation, Sketch-RNN [14] is the first approach
to represent sketches in the vector image format. In this, recurrent neural networks (RNNs)
process these vectors that constitute a sequence of strokes. The RNN encoder and RNN
decoder, collectively compute the temporal correlation between strokes in order to classify
sketches in their respective category. Vector representations have been proved to perform
favorably for tasks such as sketch generation [13, 33] as well. Although RNN based
approaches have been able to overcome the representation barriers, these approaches fail to
model the underlying distribution when the number of object categories increase. Most of
these methods use Long Short Term Memory (LSTM) units to encode the temporal informa-
tion. While LSTMs have been exhaustively employed in both natural language processing
applications and time series analysis, they have been observed to provide lower performance
for large and complex sequences.

In order to model such sequences, attention mechanism [9] has been brought into action.
This allows models to direct their resources to part of the information that most effectively
represents that object. Consequently, facilitating models to achieve superior accuracy with
lower data requirements. Our approach aligns with this ideology, and hence adapts the state-
of-the-art RNN model, Tranformers [40] to these requirements. RNNs and Long Short Term
Memory (LSTM) cells fail to encode long term dependencies and adapt to variable-length
inputs. To address these issues, we propose to exploit the self-attention mechanism in Trans-
formers, along with its capability to encode larger information, to identify multiple classes
with one model. The following section discusses the proposed approach in detail.

3 Preliminaries

LSTMs perform recurrent operations in a sequential manner. On the contrary, Trans-
formers [40] replace these complex recurrent computations with the attention mechanism.
This allows parallel computation, completely relying on self-attention, thereby reducing
computation complexity.

The transformer forms the building block in our model, and we introduce some back-
ground on the attention mechanism it uses. Attention can be described as a mapping between
the query vector (Q) and key-value pairs (K, V ) to obtain an output vector. The output
vector is the weighted sum of values, V = {vi |i ∈ {1, 2, ..., d}}, where Attention (A) is com-
puted using the scalar-dot product between a query and the keys, followed by its softmax,
to obtain the weights of values:

A(Q,K, V ) = SOFTMAX

(
QKT

√
d

)
V (1)

where K ∈ IRd . With a single attention, averaging disarms the model to combine infor-
mation from different representations. In order to facilitate this, multi-head self-attention is
performed (Fig. 2). In this, queries, keys, and values are linearly projected to obtain varying
set of projections to incorporate representations at different positions. Attention is computed
in parallel for m attention heads. These are then concatenated to generate the final output.
Equation (2) computes the output:

MA(Q, K, V ) = Concat(head1, head2, ..., headm)WO (2)
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Fig. 2 Internal structure of the Multi-Headed Self-Attention Mechanism in a Transformer block explaining
the various operations involved in obtaining the multi-head attention maps used for the ablation and attention-
based analysis done in Section 5

where headj = A(QWQ
j , KWK

j , VWV
j ), such that the project matrices WQ

j , WK
j , WV

j ∈
IR

d
m

×d , ∀j ∈ {1, 2, ...,m}, and WO ∈ IRd×d . The proposed network uses multi-head atten-
tion with m = 8 attention heads, along with d = 64. The parallel computation of these heads
is analogous to performing a single attention. Hence, allowing the model to capture posi-
tional and temporal information without increasing time complexity. The following section
discusses the role of these multi-head attention in the proposed approach in detail.

4 Proposedmethodology

In this section, we establish the motivation and then describe the technical details of the pro-
posed approach. Figure 3 shows the proposed architecture. Firstly, the data is pre-processed
to transform it into a scale and rotation invariant format. Next, the Auto-Encoder mod-
ule extracts a latent vector from the input to increase the input dimension, followed by
processing of this latent vector by the Transformer module. Finally, the class probabilities
are used to obtain sketch category.

Fig. 3 Overview of the proposed Network depicting the pre-processing of raster sketch to form the vector
image representation. Projecting the input to a higher latent dimension using the Auto-Encoder and the final
classification using the attention maps from the Transformer blocks connected via skip connections
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4.1 Motivation

The proposed approach is based on the premise of choosing a vector-image representation
to facilitate real-time detection. This format enables the data to be proposed across the
time dimension, instead of the space dimension as in case of a CNN-based approach. The
major advantage of the proposed approach is to be able to detect sketches in real-time, i.e.,
even partially rendered sketches can be processed. Hence, we employ a Transformer-based
architecture to process the sequential data.

4.2 Input representation

The input data is preprocessed to transform the sketches into the vector-image format. Our
representation is an extension of the format used by Graves [13]. Sketches are represented
using a multi-state pen stroke event. In this, S is a sketch with sequence of strokes si , i.e.
S = {s1, s2, ..., sn}, where n is the sequence length. Each stroke, si , is defined using a
3-point format:

si = {�xi,�yi, pi}, ∀i ∈ {1, 2, ..., n} (3)

where (�xi, �yi) is the offset distance in the x and y direction. For each sketch, (�x1,�y1)

begin with origin as the initial starting point. Pen-state, pi is a binary variable, with pi = 1
indicating that the pen is in contact with surface and a stroke is drawn over the offsets
(�xi,�yi), while pi = 0 represents that the pen is lifted off the surface and moved from the
previous point in the direction of offsets. The following subsection discusses the process-
ing of these inputs, S , which is fed into the proposed network to obtain respective object
categories.

4.3 AttentiveNet

Figure 3 illustrates the proposed architecture, which consists of two modules, (1) auto-
encoder, and (2) transformer-encoder. The auto-encoder module extracts features from the
input, while simultaneously facilitating a larger set of features to be fed into the transformer
module. Further, the transformer module processes this input to attentively capture the char-
acteristic information from the strokes at each time step. We now discuss these modules in
detail.

4.3.1 Auto-encoder

The input representation in the form of 3-point format (3) works for RNNs [14]. However,
the number of input features to the transformer must be divisible by the number of attention
heads in each transformer block. Hence, a mechanism was required to project the input fea-
tures to a higher latent dimension. Initial attempts of using a convolution layer and a dense
layer were successful only to a limited extent and failed to capture the exact representation
of the input features. To mitigate this issue, an auto-encoder module is proposed. The auto-
encoder performs two major functions, (1) extract latent vector (Zv) from the input and (2)
reshape the input dimension to feed a larger context vector to the transformer module for
effective processing of the input data.

The input Sv is not directly fed into the auto-encoder. Instead, it is decomposed as Sv =
{S�

v ,Sp
v }, where S�

v = (�xi, �yi) and Sp
v = pi . We only feed the offsets, S�

v ∈ IR2×n,
to obtain latent vector, Zv ∈ IR127×n, with a sequence length of n. Since Sp

v is a binary
variable, it is not processed by the auto-encoder. This ensures that the pen-state information
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is not processed with the offsets, because these two sets of information are independent
of each other. Hence, we concatenate the Sp

v with the latent vector obtained, as discussed
below.

Figure 3 shows the auto-encoder module, which consists of time-distributed dense layers
with dimensions (2, 32, 64, 127, 64, 32, 2). The middle layer, dubbed as the bottleneck layer
is extracted as the latent vector Zv . Each layer uses ReLU activation. Further, latent vector
is concatenated with the pen-state information to form the input to the tranformer module,
ST

v ∈ IR128×n, defined as:

ST
v = {Zv,Sp

v } (4)

The encoder is trained independently to learn the input and output mapping between the
offsets, S�

v , and its extended representation in the form latent vector Zv . The processing of
extended input, ST

v , by the transformer follows.

4.3.2 Transformer

Transformers [40] have been employed in the proposed approach to utilize the parallel
processing capabilities while enabling real-time sketch recognition. In the past, Transform-
ers have been primarily used for language modeling. We proposed significant changes to
the original transformer architecture to adapt it to the sketch classification task. First, the
embedding layer is removed since semantic information is not required to be preserved by
our model as opposed to the domain of Natural Language Processing.

Further, to preserve the temporal nature of our data, we use coordinate embedding [10].
In this embedding, a tuple with (position, time) is computed, instead of calculating just
the position. P t ∈ IRx×d is obtained by generating a sinusoidal position embedding with
1 ≤ i ≤ h positions, and 1 ≤ t ≤ T time steps for each vector-dimension 1 ≤ j ≤ d:

P t
i,2j = sin

(
i

100002j/d

)
+ sin

(
t

100002j/d

)
(5)

P t
i,2j+1 = cos

(
i

100002j/d

)
+ cos

(
t

100002j/d

)
(6)

In the proposed network, we use 10 identical transformer blocks connected via skip-
connections (for better information retention), as shown in Fig. 3. Each block consists of
multi-head self-attention with m = 8 heads, which is followed by addition of the residual
and normalization. The attention mechanism allows the model to learn characteristic infor-
mation from each sketch category on an abstract level. This ability mitigates the inherent
problem of high intra-class variation and low inter-class variations present in the human-
drawn sketches. In addition, identical feed-forward fully-connected layer is applied at each
position separately, which use varying set of parameters at each layer. The feed-forward (F )
layer is defined as:

F(x) = ReLU(xW1 + b1)W2 + b2 (7)

The encoded input P is fed into the Transformer blocks to obtain the point-wise attention-
maps Ak∀k ∈ {1, 2, ...,m}. The custom Extract layer is used to pick the features (extout )
corresponding to the first timestamp of the transformer output. Further, extout is passed
through a dense layer with a softmax activation function to obtain class probabilities � =
{ψ1, ψ2, ..., ψc}, where c represents the number of classes. Finally, dense layers with soft-
max activation facilitate the model to return class probabilities. The following subsection
specifies the model training configurations.
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4.4 Implementation details

For training the proposed architecture, the two modules are trained separately. Firstly, we
train the auto-encoder with a batch size of 1024, for 50 epochs and an initial learning rate
of 0.0001. Next, we freeze the weights of the auto-encoder and train the complete network
to learn the transformer parameters with a batch size of 32. Both modules share the same
training configurations. Early stopping configured with δe = 0.00001 and patience= 10 is
used. Also, Learning Rate Scheduler defines the learning rate (lri) for ith epoch as:

lri = ((lrbeg − lrmin) ∗ δi
lr ) + lrmin (8)

where δlr = 0.9 is the decay rate, lrbeg = 0.0001 represents the initial learning rate, and
lrmin = 0.00001 is the minimum learning rate. Finally we use Adam Optimizer to reduce
the cross-entropy loss defined as:

L =
c∑

j=1

ψj × log(ψj ) (9)

All computations were carried out on a Linux workstation with Intel Xeon Silver 4110
CPU, having 128 GB RAM and a TITAN RTX GPU with 24 GB memory. A stratified 5-
fold grid search was carried out on the hyper-parameters. The following section analyses
the proposed method, both quantitatively and qualitatively.

5 Experiments

5.1 Dataset and evaluationmetrics

The performance of the proposed Transformer-based network is evaluated using the bench-
mark Quick Draw dataset [14], which consists of over 50 million sketches scattered across
345 categories. This dataset was generated by collecting real-time sketches by players of
the online game, The Quick, Draw!. While acquisition, the players were given 20 seconds
to draw a sketch. Hence, generating abstract level sketches.

To validate the performance of the proposed and state-of-the-art methods, recognition
accuracy is reported on the test-set. A train-test split of 80-20% is performed with 50,000
samples per class for training, and 10,000 samples per class during testing. For exhaus-
tive comparison, we formulate three subsets of the Quick Draw dataset, having 5, 20,
and 50 classes, respectively. For each subset, the respective number of classes are picked
up randomly, with 10-fold cross-validation. Further, we compute the top-k accuracy for
k = {1, 5, 10}, i.e., top-1, top-5, and top-10 recognition rates as well. Hence, we report the
average accuracy for each subset. Trends in recognition accuracy on these datasets reveal
the dependence of accuracy on the number of classes. The following subsection compares
the accuracy performance with baselines. 1

5.2 Comparative evaluation

We compared the proposed AttentiveNet with three types of approaches, (1) traditional
classifiers, (2) CNN-based approaches, and (3) RNN-based approaches. Table 1 reports

1Official TensorFlow implementation of RNN for QuickDraw
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Table 1 Comparative evaluation of recognition accuracy on the Quick Draw dataset, with (a) 5 classes, (b)
20 classes, (c) 50 classes

Method 5 20 50

HOG-SVM [11] 75.21% 66.79% 63.22%

Fisher-Vectors [28] 79.53% 75.80% 72.90%

AlexNet [17] 77.18% 75.22% 73.06%

Sketch-a-Net v2 [46] 94.78% 88.64% 85.19%

Resnet50-CNN [15] 96.47% 90.06% 86.20%

RNN-Tensorflow1 95.58% 87.33% 83.98%

Ours 96.21% 90.31% 88.72%

Values in bold depict the best accuracy for each subset

the recognition accuracy. We implemented and trained various approaches to compare the
performance of the proposed approach. To ensure fairness, training is performed on the same
subsets for all techniques. AttentiveNet outperforms the state-of-the-art approaches for 20
and 50 classes. However, Resnet50-CNN [46] performs marginally better than AttentiveNet
with a gain of 0.26% for dataset with 5 classes.

As the number of classes increases from 5 to 20, most of the approaches show a
significant decrease inaccuracy. The drop in accuracy is observed to be 11.20% for HOG-
SVM [11], 4.69% for Fisher-Vectors [46], 2.53% for AlexNet [17], 6.48% for Sketch-a-Net
v2 [46], 6.22% for Fisher-Vectors [46], 8.63% for RNN-Tensorflow1, 6.13% for Atten-
tiveNet. Further increasing the number of classes from 20 to 50, drop-in accuracy was
observed to be 5.34% for HOG-SVM [11], 3.8% for Fisher-Vectors [46], 2.88% for
AlexNet [17], 3.45% for Sketch-a-Net v2 [46], 4.22% for Fisher-Vectors [46], 3.83% for
RNN-Tensorflow1, 1.17% for AttentiveNet. For the proposed approach, increasing the num-
ber of classes observes a lower drop in accuracy, compared to other approaches. Due to
limited resource availability, analysis over the complete dataset could not be performed.
To account for this, we randomly selected c classes, where c ∈ {5, 20, 50}, and report the
averages over 10-fold cross-validation.

In addition, we compare the proposed approach with the state of the art approaches over
all 345 categories in the dataset. For this, we have compared the top-1, top-5, and top-10

Table 2 Comparative evaluation of recognition accuracy on the Quick, Draw! dataset, with (a) Top-1, (b)
Top-5, (c) Top-10 accuracy

Method Top-1 Top-5 Top-10

Traditional HOG-SVM [11] 50.25 ± 2.05% 62.51 ± 0.64% 64.22 ± 1.64%

Classifiers Fisher-Vectors [28] 56.11 ± 1.34% 74.28 ± 1.00% 79.19 ± 0.33%

CNN-based AlexNet [17] 63.25 ± 0.95% 80.83 ± 2.07% 85.02 ± 1.36%

Classifiers ResNet50-CNN [15] 78.86 ± 2.18% 91.10 ± 0.86% 94.14 ± 0.97%

Sketch-a-Net v2 [46] 74.84 ± 1.01% 87.19 ± 1.13% 91.25 ± 2.00%

RNN-based RNN-Tensorflow1 75.59 ± 2.04% 90.14 ± 1.27% 94.20 ± 2.08%

Classifiers Ours 79.35 ± 0.96% 91.30 ± 0.84% 93.95 ± 1.38%
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Fig. 4 Relative classification accuracy of the baselines and their trends with respect to Top-k accuracies

recognition accuracy. Table 2 reports the accuracy performance, and Fig. 4 visualizes these
results. Quantitative evaluation confirms the effectiveness of representing sketches as vector
images. Moreover, this representation facilitates real-time recognition of sketches. Ablation
studies follow in the next subsection.

6 Discussions

6.1 Ablation analysis

6.1.1 Model configurations

The proposed approach majorly constitutes two modules, the auto-encoder, and the transformer
blocks. In this section, we evaluate the effectiveness of these propositions. For this, we compare
the recognition accuracy of different models by tweaking four model configurations. First,
is the choice between Transformers [40] and Universal Transformers [10]. Since we adopt
these sequential models given their success in language modeling, universal transformers
provide a lucrative alternative against transformers. Second, we vary the number of trans-
former blocks. Third, we add skip-connections between each transformer block to exploit
the power of residual learning. Finally, experiments that corroborate the effectiveness of the
proposed auto-encoder is performed. Table 3 reports the observed performance.

For most of the language modeling tasks, Universal transformers perform favorably
against the original transformer. However, the proposed architecture outperforms univer-
sal transformers. This is because universal transformer blocks share weights. Consequently,
reducing the number of parameters. This leads to its inability to capture complex intraclass
and interclass variations in sketches. Transformers with 5 blocks perform significantly bet-
ter than its counterpart with universal transformers for all three subsets, with a gain of 0.1%,
3.07%, and 4.84%, respectively. Further, using the Adaptive computation time (ACT) mech-
anism with universal transformers still performs inferior to transformers, due to the early
halting.

Varying the number of transformer blocks alters the number of parameters. The pro-
posed network with 10 blocks performs significantly better than the 5-block variant. This
enables the model to address the complexity of sketch recognition. Increasing the number
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Table 3 Ablation Analysis and comparative results for different models on the QuickDraw [14] Dataset in
terms of Accuracy reported on three subsets with 5, 20 and 50 classes respectively

Model Configurations Recognition Accuracy

T/UT No. of Blocks Skip-connections Auto-encoder 5 20 50

T 5 93.66% 84.44% 78.90%

T 5 94.56% 86.38% 81.60%

T 10 92.91% 85.32% 75.03%

T 10 94.60% 86.55% 77.44%

UT 5 93.76% 87.11% 82.87%

UT + ACT 5 92.73% 83.14% 79.55%

T 10 95.71% 89.13% 87.21%

T 10 96.21% 90.31% 88.72%

T: Transformer UT: Universal Transformer ACT: Adaptive Computation Time. Values in bold depict the
highest accuracy achieved in each subset

of blocks further provided an insignificant increase in accuracy with a relatively large train-
ing overhead, such as time and space complexity. Further, inclusion of residual learning
observes improvement in model performances for CNNs [15]. In our network, we add skip-
connections between the transformer blocks. This is because gradients often get lost when
passed through multiple layers. In order to address this issue, skip-connections ensure that
lower layers receive information, even if the network gets deeper.

The proposed architecture with auto-encoder displays significantly superior recognition
accuracy, as compared to other ablations. This is due to the fact that the offsets (�xi,�yi),
contain fairly low amount of information for computationally intensive architectures like
transformers. Hence, mapping the offsets to a larger latent vector enables the transformer to
tweak the attention heads with a lot more available input data.

6.1.2 Attention heatmaps

The proposed method introduces transformers to exploit the sequence of strokes to draw
attention to parts of sketches. Figure 5 illustrates the attention maps for various classes.
The attention softmax scores corresponding to the first input of the first head is used for
the attention-based ablation study. This particular choice is made taking into consideration
the fact that the sketches are being recognised by extracting the logits from output corre-
sponding to the first timestamp of the input. For the bat class, attention on both the wings
are equally focused. This is analogous to how humans recognize bats through their pecu-
liar wing shape. For the cello class, the model directs its attention towards the typical round
shape. This trend is also observed for the fan class, where central spikes and pedestal are
aptly recognized by the proposed model for recognition. It is interesting to note that for the
star class, equally high attention is given to the complete structure. Perhaps, structures like
stars that are symmetric in nature and constitute a distinct shape are identified based on the
overall view of the sketches. Similarly, certain parts of the sketch are more important in
recognizing an object; this is supported by the attention heatmaps presented.

The role of auto-encoders is discussed in the previous sub-subsection. In Fig 6, we com-
pare the attention maps generated with (a) network containing the auto-encoder module,
and (b) network without an auto-encoder module. The auto-encoder enhances the attention
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Fig. 5 Visualization of the attention maps of a few classes in the QuickDraw [14] dataset depicting the
relative importance of the points in the strokes as observed by the model while inference

magnitude over the right areas for most of the classes. While the absence of auto-encoder
provides fewer patches with high attention. This supports the hypothesis that the autoen-
coder module effectively extracts information and hence plays a pivotal role in the proposed
AttentiveNet architecture. Figure 7 visualizes a sample User-Interface performance using
the proposed approach, with inference in real-time.

6.2 Computational complexity analysis

In this subsection, we discuss the computational cost of the proposed approach in com-
parison to existing techniques. Conventional and CNN-based techniques can only per-
form classification, once the sketch has been rendered completely. On the other hand,

Fig. 6 Attention-map based ablation study using a Transformer (10 Blocks) + Auto Encoder b Transformer
(10 Blocks)
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Fig. 7 Custom user interface designed to facilitate real-time inference. Progressive inference is performed
on the sketch to accurately predict the object being drawn on the interface

sequence-based models have the ability to classify partially rendered drawings as well –
facilitating real-time inference. Therefore, the use of sequence-based classifiers over the
conventional and CNN-based sketch classifiers provides a significant advantage in terms of
the inference times. This extended functionality of sequence-based classifiers establishes
dominance over these conventional and CNN-based approaches in terms of computational
efficiency.

Amongst the sequence-based classifiers, the Transformer-based architectures outper-
form the RNN-based techniques in terms of computational costs involved. This is mainly
due to ability of Transformers to utilize parallel processing. To process an input with n

time-steps, the Transformers require O(1) sequential operations, while RNN-based archi-
tectures require O(n) sequential operations [40]. We compare the average inference times
per sample, averaged across 10,000 samples, for the difference sequence-based archi-
tectures, reported in Table 4. A noticeable improvement in inference times can clearly
be observed for the proposed Transformer-based architecture as compared to existing
RNN-based implementation i.e. RNN-Tensorflow1.

7 Conclusion and future directions

In this work, we proposed a novel Transformer-based architecture, dubbed as AttentiveNet,
for recognizing sketches using vector images. The autoencoder extracts information from
the input data in the form of a latent vector. Moreover, this renders the input dimen-
sion compatibility between the input data and transformer-blocks. The proposed approach
enables real-time inference capabilities, which is an essential functionality in any practi-
cal setup. Moreover, this functionality is incorporated at reduced computational cost, when

Table 4 Average per-sample inference times for the various architectures for the sequence-based models

Model Inference Time

RNN-Tensorflow1 112.29 ± 10 ms

Transformer 80.38 ± 6 ms
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compared with existing approaches. Further, transformer-blocks enable the model to focus
on characteristic information from each sketch. The proposed approach achieves favorable
recognition accuracy when compared with state-of-the-art approaches. Ablation analysis,
along with attention heatmaps reveal that the proposed approach makes prediction based on
certain parts of sketches, that are intuitive in nature.

In future, transformer-based architectures can be adapted to address problems in the
domain of computer vision applications. Potential applications may involve tasks such as
sketch retrieval or sketch synthesis, which require descriptive line-drawing features, could
be exciting to explore. The proposed approach opens avenues to improve the cognition abil-
ities of computers to process data in sequential nature. Alternate realms of computer vision
that utilize such sequential information include human action recognition for complex
motion sequences like, dance, martial arts etc.
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